Question 2 Which matricial equation is equivalent to this system ? $\begin{pmatrix} -9+3 \\ 6+6 \\ \end{pmatrix}= \begin{pmatrix} 3 \\ -3 \\ \end{pmatrix} $ $\begin{pmatrix} -9 & 3 \\ 6 & 6 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix}= \begin{pmatrix} 3 \\ -3 \\ \end{pmatrix}$ $\begin{pmatrix} -9 & 6 \\ 3 & 6 \\ \end{pmatrix} \begin{pmatrix} x \\ y \\ \end{pmatrix}= \begin{pmatrix} 3 \\ -3 \\ \end{pmatrix}$ $\begin{pmatrix} -9x & 6y \\ 3x & 6y \\ \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ \end{pmatrix} $
Question 3 Which augmented matrix is in echelon form ? $\left( \begin{array}{ c c c | c } -1 & 0 & -2 & 2 \\ 1 & 0 & 2 & -1 \\ 3 & 0 & 6 & 1 \end{array} \right)$ $\left( \begin{array}{ c c c | c } 1 & 0 & 2 & 0 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right)$ $\left( \begin{array}{ c c c | c } -2 & 1 & 0 & 1 \\ 0 & -3 & 1 & 0 \\ 0 & 4 & 1 & 0 \end{array} \right)$ $\left( \begin{array}{ c c c | c } 0 & 1 & -3 & 0 \\ 0 & -1 & 0 & 0 \\ -3 & 1 & 1 & 0 \end{array} \right)$
Question 4 What are the solutions of this augmented matrix ? $\{\}$ infinitely many solutions $\{3,-2\}$ $\{-3,1\}$
Question 5 For which value of $a$ has this equation infinitely many solutions ? $\{4\}$ infinitely many values $\{-1\}$ $\{2\}$
Question 6 What are the solutions of this equation ? $\{\}$ infinitely many solutions $\{ (\frac{1}{8}, \frac{3}{8}) \}$ $\{(0,1)\}$
Question 7 Which equation is $\vec{x}$ the solution thereof ? $\left( \begin{smallmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 3 & 0 & 6 \end{smallmatrix} \right) \left( \begin{smallmatrix} x \\ y \\ z \end{smallmatrix} \right) = \left( \begin{smallmatrix} 0 \\ -1 \\ 0 \end{smallmatrix} \right)$ $\left( \begin{smallmatrix} 0 & 1 & -3 \\ 0 & -1 & 0 \\ -3 & 1 & 1 \end{smallmatrix} \right) \left( \begin{smallmatrix} x \\ y \\ z \end{smallmatrix} \right) = \left( \begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix} \right)$ $\left( \begin{smallmatrix} -1 & 0 & -2 \\ 1 & 0 & 2 \\ 3 & 0 & 6 \end{smallmatrix} \right) \left( \begin{smallmatrix} x \\ y \\ z \end{smallmatrix} \right) = \left( \begin{smallmatrix} 2 \\ -1 \\ 1 \end{smallmatrix} \right)$ $\left( \begin{smallmatrix} -2 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 4 & 1 \end{smallmatrix} \right) \left( \begin{smallmatrix} x \\ y \\ z \end{smallmatrix} \right) = \left( \begin{smallmatrix} 1 \\ 0 \\ 0 \end{smallmatrix} \right)$